η^{3}-1,3,5-Triazacyclohexane complexes of tribenzylchromium (III)

Randolf D. Köhn *, Gabriele Kociok-Köhn, Matthias Haufe
Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Straße des 17, Juni 135, D-10623 Berlin, Germany

Received 2 May 1995

Abstract

1,3,5-Tribenzyl-1,3,5-triazacyclohexane (' $\mathrm{Bz}_{3} \mathrm{TAC}$ ') and $1,3,5$-tricyclohexyl-1,3,5-triazacyclohexane (' $\mathrm{Cy}_{3} \mathrm{TAC}$ ') react with $\mathrm{CrCl}_{3}(\mathrm{THF})_{3}$ to the corresponding complexes $\left(\mathrm{Bz}_{3} \mathrm{TAC}^{2}\right) \mathrm{CrCl}_{3}(\mathbf{1 a})$ and $\left(\mathrm{Cy}_{3} \mathrm{TAC}\right) \mathrm{CrCl}_{3}(\mathbf{1 b})$. These react with benzyl sodium in toluene structure of $\mathbf{2 b} \cdot 1.5$ toluene has been determined by X-ray diffraction.

Keywords: Chromium; Benzyl; 1,3,5-Triazacyclohexane; UV-vis absorption spectroscopy; NMR spectroscopy; IR spectroscopy

1. Introduction

Compared to the extensive work on homogeneous coordination compounds of the early transition metals that catalyze Ziegler-Natta-type olefin polymerization, only a few chromium-based compounds have been made as homogeneous model systems for the Phillips catalysts. Theopold et al. [1] prepared a few well-characterized Cp '-chromium alkyl complexes, e.g. [$\left.\mathrm{Cp}{ }^{*} \mathrm{Cr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3} \mathrm{Li}\right]$, that are able to polymerize ethylene. However, the original Phillips catalyst is based on a chromium alkyl (or hydride) in the hard ligand sphere of the silicate oxygen atoms (e.g. Ref. [2]) and recently Flood et al. [3] have shown that cationic rhodium(III) methyl complexes containing the hard 1,4,7-trimethyl-1,4,7-triazacyclononane ligand are able to catalyze slow ethylene polymerization even in water. Therefore, we are investigating alkyl chromium complexes in a hard ligand environment of tertiary nitrogen donors.

Recently, we have shown that the much more readily accessible 1,3,5-triazacyclohexane $\mathrm{R}_{3} \mathrm{TAC}(\mathrm{R}=\mathrm{Me}$, ${ }^{i} \mathrm{Pr}$) can be used instead of 1,4,7-triazacyclononanes to prepare η^{3}-bonded chromium trichloride complexes [4]. Two crystal structures of the η^{3}-bonded ligands showed

[^0]that the bite angle $\mathrm{N}-\mathrm{M}-\mathrm{N}\left(62^{\circ}\right)$ is much smaller than in 1,4,7-triazacyclononane complexes, which should further increase the reactivity of these complexes. ($\left.{ }^{i} \mathrm{Pr}_{3} \mathrm{TAC}\right) \mathrm{CrCl}_{3}$ couid be converted to the bisalkyl complex (${ }^{i} \mathrm{Pr}_{3} \mathrm{TAC}$) CrCl($\left.\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}$. However, we were unable to prepare the corresponding tris-alkyl compounds using lithium reagents. Apparently, the barely soluble chromium trichloride complexes reacted with the large excess of the soluble lithium alkyls with reduction to lower valent chromium compounds that could not be characterized.

In this paper we describe the syntheses of more soluble 1,3,5-triazacyclohexane complexes of chromium trichloride and their trialkylation with the barely soluble benzyl sodium.

2. Results

In a similar manner to $\mathrm{Me}_{3} \mathrm{TAC}$ and ${ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TAC}$ [4], $\mathrm{Bz}_{3} \mathrm{TAC}$ and $\mathrm{Cy}_{3} \mathrm{TAC}$ react with $\mathrm{CrCl}_{3}(\mathrm{THF})_{3}$ in THF to yield the corresponding purple $\left(\mathrm{R}_{3} \mathrm{TAC}\right) \mathrm{CrCl}_{3}[\mathrm{R}=$ $\mathrm{Bz}(\mathbf{1 a})$ and $\mathrm{Cy}(\mathbf{1 b})]$. However, they are much more soluble in chlorinated solvents (up to $6 \mathrm{~g} \mathrm{l}^{-1}$ of $\mathbf{1 a}$ and $0.6 \mathrm{~g} \mathrm{l}^{-1}$ of $\mathbf{1 b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Complex 1 a shows some solubility even in THF and must be precipitated by addition of water. The compounds are air- and waterstable and do not decompose below $350^{\circ} \mathrm{C}$.

UV-vis spectra of 1a, \mathbf{b} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ show the first two absorptions corresponding to the octahedral $\mathrm{Cr}^{\text {III }}$
$d-d$ transitions $A_{2 g} \rightarrow T_{2 g}$ and $A_{2 g} \rightarrow T_{1 g}(F)$. The average ligand field parameters $10 D q(\mathbf{1 a})=13989 \mathrm{~cm}^{-1}$, $10 D q(1 \mathrm{~b})=13651 \mathrm{~cm}^{-1}, \quad B^{\prime}(1 \mathrm{a})=570 \mathrm{~cm}^{-1} \quad$ and $B^{\prime}(1 b)=550 \mathrm{~cm}^{-1}$ can be derived. A third transition corresponding to $A_{2 g} \rightarrow T_{1 g}(P)$ was found as a shoulder at $29917 \mathrm{~cm}^{-1}$ for $\mathbf{1 a}$ and $27400 \mathrm{~cm}^{-1}$ for $\mathbf{1 b}$ close to the value calculated from $D q$ and $B^{\prime}(30840$ and $30070 \mathrm{~cm}^{-1}$). With the ligand field parameters for $\left[\mathrm{CrCl}_{6}\right]^{3-}$ and $\left[\mathrm{Cr}(\mathrm{en})_{3}\right]^{3+}$, an average $10 D q \approx 17500$ cm^{-1} and $B^{\prime} \approx 600 \mathrm{~cm}^{-1}$ can be expected for (amine) ${ }_{3} \mathrm{CrCl}_{3}$. This shows that R_{3} TAC causes a much weaker ligand field splitting and a smaller Racah parameter B^{\prime} than normal amine ligands.

Stirring 1a, b with yellow $\mathrm{NaCH}_{2} \mathrm{Ph}$ slowly produced brown solutions of $\left(\mathrm{R}_{3} \mathrm{TAC}\right) \mathrm{Cr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}(2 \mathrm{a}, \mathrm{b})$ which can be recrystallized from toluene (see Scheme $1)$.
The elemental analyses were low in carbon corresponding to up to three carbon atoms less per chromium. This could be improved by addition of KNO_{3} to the sample to allow better combustion.

UV-vis spectra of $\mathbf{2 a}, \mathbf{b}$ show two absorptions that can be assigned to the $d-d$ transitions as for 1a, \mathbf{b} giving the ligand field parameters $10 D q(2 a)=15822$ $\mathrm{cm}^{-1}, 10 D q(2 \mathbf{b})=15820 \mathrm{~cm}^{-1}, B^{\prime}(2 \mathbf{a})=670 \mathrm{~cm}^{-1}$, and $B^{\prime}(2 b)=470 \mathrm{~cm}^{-1}$. As expected, the $10 D q$ value is increased by alkylation. These spectra can be compared to the reported UV -vis spectra of $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right]^{-}$and $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3} \mathrm{Li}\right]$ [1]. When assigned to $d-d$ transitions, $10 D q=15800$ and 16600 cm^{-1} and $B^{\prime}=200$ and $180 \mathrm{~cm}^{-1}$, respectively, can be obtained. This shows that the ligand field splitting caused by $\mathrm{Cp}{ }^{*}$ is similar to $\mathrm{R}_{3} \mathrm{TAC}$, but B^{\prime} is much smaller due to the more covalently bound $\mathrm{Cp}{ }^{*}$.

Fig. 1. Platon plot of $\boldsymbol{2 b} \cdot \cdot 1.5$ toluene.

The presence of the Cr -benzyl groups can also be seen in the IR spectra. Comparing ($\mathrm{R}_{3} \mathrm{TAC}$) CrCl_{3} with $\left(\mathrm{R}_{3} \mathrm{TAC}\right) \mathrm{Cr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}$ allows the assignment of four characteristic absorptions to the Cr -benzyl groups, 3062, $1588,1483,961 \mathrm{~cm}^{-1}$ for 2 a and $3063,1591,1481$, $966 \mathrm{~cm}^{-1}$ for 2 b , which compare well with the vibrations in [$\left.\mathrm{Cp}{ }^{*} \mathrm{Cr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3} \mathrm{Li}\right]$ that are shifted upon full deuteration of the benzyl group (3057, 1589, 1477, 966 cm^{-1}) [1].

The X-ray crystal structure of $\mathbf{2 b}$ (Fig. 1) shows monomeric complexes with one η^{3}-bound $\mathrm{Cy}_{3} \mathrm{TAC}$ and three benzyl groups. The average $\mathrm{Cr}-\mathrm{C}$ bond length of

Scheme 1.

Scheme 2. Comparison of the donor orbital overlap in $\mathrm{Cp}, \mathrm{K}_{3} \mathrm{TAC}$ and $\mathrm{K}_{\mathbf{3}} \mathrm{TACN}$.
$2.12 \AA$ and the $\mathrm{C}-\mathrm{Cr}-\mathrm{C}$ angles of $90^{\circ}-97^{\circ}$ are similar to the distances and angles in $\left[\mathrm{Cp}^{*} \mathrm{Cr}\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}(\mathrm{py})\right]$ or $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3} \mathrm{Li}\right](2.12-2.17 \AA$, $93^{\circ}-100^{\circ}$) [1]. However, the long $\mathrm{Cr}-\mathrm{N}$ bonds (av. $2.28 \AA$) and acute $\mathrm{N}-\mathrm{Cr}-\mathrm{N}$ angles of $61^{\circ}-62^{\circ}$ are similar to the distances and angles in the only other structurally characterized triazacyclohexane complex of $\mathrm{Cr}^{\mathrm{III}},\left({ }^{\mathrm{i}} \mathrm{Pr}_{3} \mathrm{TAC}\right) \mathrm{CrCl}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}(229-230 \AA$ trans to $\mathrm{C}, 60^{\circ}-63^{\circ}$), and result from the ring strain [4]. Since the triazacyclohexane ligand shows no severe distortions, the nitrogen lone pairs are oriented essentially parallel to each other and cannot overlap with chromium orbitals as well as other amine ligands. This situation is more comparable to Cp ligands where the metal-bonding p-orbitals are also parallel to each other. In fact, the cone angle of the donor atoms of the Cp^{*} in [$\mathrm{Cp}{ }^{*} \mathrm{Cr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3} \mathrm{Li}$] is 32° [1] compared to 36° in $\mathbf{2 b}$ and a much larger 49° in the triazacyclononane complex ($\left.{ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{TACN}\right) \mathrm{CrCl}_{3}$ [5]. Consequently, the $\mathrm{Cr}-\mathrm{C}\left(\mathrm{Cp}{ }^{*}\right)$ bond is similarly elongated to 2.29 A (see Scheme 2).

In conclusion, we have demonstrated that chromium tribenzyl complexes in the hard ligand environment of 1,3,5-triazacyclohexanes can be prepared which show many similarities to $\left[\mathrm{Cp}{ }^{*} \mathrm{Cr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right]^{-}$.

3. Experimental details

All manipulations were carried out under argon (standard vacuum line, Braun glove box) and using Schlenk techniques. Solvents were dried according to standard methods. Bz_{3} TAC was purchased from Aldrich and recrystallized from hexane. $\mathrm{Cy}_{3} \mathrm{TAC}$ has been prepared before [6]. $\mathrm{CrCl}_{3}(\mathrm{THF})_{3}$ [7] and $\mathrm{NaCH}_{2} \mathrm{Ph}$ (analogous to $\mathrm{KCH}_{2} \mathrm{Ph}$ [8]) were prepared according to published procedures. For IR spectra a Perkin-Elmer 580 B instrument, for UV-vis spectra a Beckman DU 650 instrument, for ${ }^{1} \mathrm{H}$ NMR spectra a Bruker WP-80 SY (80 MHz) instrument and for ${ }^{13} \mathrm{C}$ NMR spectra a Bruker ARX 200 (200 MHz) instrument were used. Elemental analyses were performed on a Perkin-Elmer Series II CHN/O analyser 2400 or at the analytical facility of the Humboldt Universität, Berlin. Melting points were determined on a HWS-SG 2000 instrument and are uncorrected. Magnetic moments are determined according to the Evans method [9].

3.1. Synthesis of $C y_{3} T A C$

Sodium hydroxide (1 g) and then cyclohexylamine ($24 \mathrm{ml}, 210 \mathrm{mmol}$) were added to a 37% solution of formaldehyde in water ($20 \mathrm{ml}, 269 \mathrm{mmol}$). After $30-\mathrm{min}$ stirring, the organic phase was separated and the aqueous phase extracted three times with 30 ml of $\mathrm{Et}_{2} \mathrm{O}$. After drying the combined organic phases with NaOH and removal of the solvent in vacuo, the crude Cy_{3} TAC
was recrystallized repeatedly from hexane until a melting point of $72.5^{\circ} \mathrm{C}$ (lit. value [6]: $72.2-72.8^{\circ} \mathrm{C}$) was obtained. Yield, $14.6 \mathrm{~g}(63 \%)$. Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{~N}_{3}$ (333.56): C, $75.62 ; \mathrm{H}, 11.79$; N, 12.60%. Found: C, $74.92 ; \mathrm{H}, 11.50 ; \mathrm{N}, 13.08 \%{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 3.59$ (br s, $2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}$); 2.98 (br s, $4 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}$); 2.67 (m, 2H, N-CH); 2.45 (m, 1H, N-CH); 1.591.93 and $1.06-1.35(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Cy})$ ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 68.39\left(\mathrm{~N}-\mathrm{CH}_{2}-\mathrm{N}\right) ; 58.54(\mathrm{~N}-\mathrm{CH})$; 30.04, 26.28, 25.80 (Cy) ppm.

3.2. Synthesis of ($\left.\mathrm{Bz}_{3} \mathrm{TAC}\right) \mathrm{CrCl}_{3}$ (1a)

$\mathrm{Bz}_{3} \mathrm{TAC}(630 \mathrm{mg}, 1.76 \mathrm{mmol})$ and $\mathrm{CrCl}_{3}(\mathrm{THF})_{3}$ ($644 \mathrm{mg}, 1.72 \mathrm{mmol}$) were stirred in THF (20 ml). After $1 \mathrm{~h}, 100 \mathrm{ml}$ of water were added to the purple suspension for complete precipitation of the product. Filtration, repeated washings with water and then $\mathrm{Et}_{2} \mathrm{O}$, and drying in vacuo yielded 360 mg (97%) of purple 1a, m.p. $>400^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{CrCI}_{3}$ (515.86): C, 55.88 ; H, 5.28 ; N, 8.15\% Found: C, 55.44; H, 5.19; N, 8.17%. IR (KBr) $\nu\left(\mathrm{cm}^{-1}\right): 410(\mathrm{w}) ; 419(\mathrm{~m}) ; 465(\mathrm{w}) ;$ 470(w); 511(s); 618(m); 701(s); 747(s); 756(s); 768(w); 912(m); 921(s); 973(m); 1003(w); 1018(s); 1030(m); 1053(m); 1071(s); 1081(s); 1092(s); 1114(w); 1132(s); 1153(s); 1203(w); 1218(m); 1260(w); 1278(w); 1297(m); 1336(w); 1347(m); 1366(s); 1412(m); 1456(s); 1496(m); 2878(m); 2921(w); 2946(m); 3005(w); $3033(\mathrm{~m}) ; 3063(\mathrm{w}) ; 3089(\mathrm{w}) ; 3107(\mathrm{w}) . \quad \mu_{\mathrm{eff}}=3.8 \mu_{\mathrm{B}}$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu\left(\mathrm{cm}^{-1}\right)\left(\varepsilon, 1 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right): 13989$ (160); 19650 (330); 29917 (30).

3.3. Synthesis of $\left(\mathrm{Cy}_{3} \mathrm{TAC}\right) \mathrm{CrCl}_{3}$ (1b)

$\mathrm{Cy}_{3} \mathrm{TAC}(2.00 \mathrm{~g}, 6.00 \mathrm{mmol})$ and $\mathrm{CrCl}_{3}(\mathrm{THF})_{3}(2.02$ $\mathrm{g}, 5.39 \mathrm{mmol}$) were stirred in THF (30 ml) for 1 h . Filtration, repeated washings with $\mathrm{Et}_{2} \mathrm{O}$ and drying in vacuo yielded 2.37 g (89%) of purple 1 b, m.p. $360^{\circ} \mathrm{C}$ (dec.). Analysis: Calc. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{CrCl}_{3}$ (491.92): C, 51.27; H, 7.99; N, 8.54\% Found: C, 51.04; H, 7.81; N, 9.16\%. IR (KBr) $\nu\left(\mathrm{cm}^{-1}\right): 404(\mathrm{~m}) ; 519(\mathrm{w}) ; 547(\mathrm{~m})$; 842(w); 897(w); 918(m); 948(s); 987(m); 1016(s); 1033(m); 1054(m); 1067(s); 1078(s); 1093(s); 1120(s); 1151(w); 1170(s); 1201(m); 1211(w); 1261(m); 1280(m); 1292(w); 1314(w); 1338(w); 1353(m); 1381(m); 1396(w); 1406(w); 1453(s); 1484(w); 2857(s); 2930(s); 2970(w); 2997(w). UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ~ \nu$ $\left(\mathrm{cm}^{-1}\right)\left(\varepsilon, 1 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right): 13651$ (130); 19145 (230); 27400 (50).

3.4. Synthesis of $\left(\mathrm{Bz}_{3} \mathrm{TAC}\right) \mathrm{Cr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}$ (2a)

Benzyl sodium ($200 \mathrm{mg}, 1.75 \mathrm{mmol}$) and 1a (214 $\mathrm{mg}, 0.415 \mathrm{mmol}$) were stirred in toluene (20 ml) for 5 d. After allowing the mixture to settle for 1 d , the deep brown solution was decanted from the yellow residue.

Evaporation of the solvent and drying in vacuo yielded 161 mg (57%) of brown 2a, m.p. $143-145^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{45} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{Cr}$ (682.90): C, 79.15; H, 7.09; N , 6.15%. Found: C, 73.99 ; H, 7.56 ; N, 6.31%. IR (KBr) ν (cm^{-1}): 437(w); 464(w); 505(m); 614(w); 651(w); 698(s); 754(s); 961(m); 1019(m); 1072(m); 1084(s); 1093(m); 1130(m); 1202(m); 1212(m); 1309(m); 1346(m); 1454(s); 1483(s); 1495(s); 1588(s); 1653(w); 1675(m); 1703(s); 2824(w); 2933(w); 2984(m); 3008(w); 3027(m); 3062(m); 3085(w); 3106(w). UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu\left(\mathrm{cm}^{-1}\right)\left(\varepsilon, 1 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right): 15822$ (280); 22401 (910).

3.5. Synthesis of $\left(\mathrm{Cy}_{3} \mathrm{TAC}\right) \mathrm{Cr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}$ (2b)

Reaction of benzyl sodium ($100 \mathrm{mg}, 0.88 \mathrm{mmol}$) and 1b ($47 \mathrm{mg}, 0.096 \mathrm{mmol}$) analogous to 2a yielded 54 mg (71%) of greenish brown 2 b, m.p. $90-105^{\circ} \mathrm{C}$ (dec.). Anal. Calc. for $\mathrm{C}_{42} \mathrm{H}_{60} \mathrm{~N}_{3} \mathrm{Cr}$ (658.95): C, $76.55 ; \mathrm{H}$, 9.18 ; N, 6.38%. Found: C, 76.61 ; H, 9.88 ; N, 5.87% (after addition of KNO_{3}). IR (KBr) $\nu\left(\mathrm{cm}^{-1}\right)$: $408(\mathrm{~m})$; 422(m); 526(m); 698(s); 729(m); 746(s); 799(m); 880(w); 893(w); 918(m); 946(s); 967(m); 986(m); 997(w); 1004(w); 1027(m); 1062(m); 1077(m); 1091(m); 1125(s); 1151(w); 1172(m); 1210(s); 1258(m); 1301(w); 1346(w); 1378(m); 1409(w); 1420(w);

Table 1
Crystallographic data and data collection for $\mathbf{2 b} \cdot 1.5$ toluene

Molecular formula	$\mathrm{C}_{52.5} \mathrm{H}_{68} \mathrm{CrN}_{3}$	
Molecular weight	793.10	
Crystal system	monoclinic	
Space group	$P 2_{1} / n$	
Crystal dimensions (mm)	$0.21 \times 0.21 \times 0.42$	
$a(\AA)$	11.761(3)	
b (\AA)	16.211(3)	
$c(\AA)$	23.791(4)	
$\beta\left({ }^{\circ}\right.$)	97.17(2)	
$V\left(\AA^{3}\right)$	4500(2)	
Z	4	
$D_{\text {calc. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.171	
Temperature (K)	166(2)	
Radiation	Mo K $\alpha(\lambda=0.71069 \AA)$	
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $\left(\mathrm{mm}^{-1}\right.$)	0.284	
$F(000)$	1712	
Scan type	$\omega-2 \theta$	
$\theta-$ range (${ }^{\circ}$)	1-22	
Index ranges	$\begin{aligned} & 0 \leqslant h \leqslant 12,0 \leqslant k \leqslant 17, \\ & -25 \leqslant l \leqslant 25 \end{aligned}$	
Total No. of reflections	6199	
No. of independent reflections $[I>2 \sigma(I)]$	3746 [$R_{\text {int. }}=0.0168$]	
No. of parameters refined	523	
$R=\Sigma\| \| F_{0}\left\|-\left\|F_{\mathrm{c}} \\| / \Sigma\right\| F_{0}\right\|$	0.049	
$\begin{gathered} w R_{2}=\left[\Sigma\left[w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right]\right] \\ \left.\Sigma\left[w\left(F_{\mathrm{O}}^{2}\right)^{2}\right]\right]^{1 / 2} \end{gathered}$	0.109	
Goodness-of-fit on F^{2}	1.076	
Largest diff. peak and hole (e \AA^{-3})	0.373 and -0.236	

Table 2
Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\left(\mathrm{Cy}_{3} \mathrm{TAc}\right)$ or $\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3} \cdot 1.5$ toluene

Atom	x	y	z	$U_{\text {eq }}{ }^{\text {a }}$
Cr	2127(1)	1607(1)	6943(1)	21(1)
C(1)	567(4)	456(3)	6465(2)	25(1)
$\mathrm{N}(1)$	1798(3)	297(2)	6618(1)	21(1)
C(10)	2276(3)	-220(3)	61769(2)	23(1)
C(11)	3559(4)	-372(3)	6329(2)	20(1)
C(12)	4043(4)	-841(3)	5853(2)	35(1)
C(13)	3409(4)	-1645(3)	5709(2)	36(1)
C(14)	2132(4)	-1486(3)	5566(2)	40(1)
C(15)	1655(4)	-1040(3)	6053(2)	33(1)
C(2)	1960(4)	-55(3)	7198(2)	25(1)
N (2)	1657(3)	629(2)	7560(1)	20(1)
C(20)	2065(4)	463(3)	8172(2)	23(1)
$\mathrm{C}(21)$	1950(4)	1216(3)	8540(2)	33(1)
C(22)	2518(4)	1040(3)	9149(2)	37(1)
C(23)	1977(4)	307(3)	9399(2)	34(1)
$\mathrm{C}(24)$	2043(4)	-448(3)	9027(2)	34(1)
$\mathrm{C}(25)$	1494(4)	-279(3)	8413(2)	30(1)
C(3)	425(3)	785(3)	$7435(2)$	24(1)
N(3)	280(3)	1118(2)	6848(1)	21(1)
C(30)	-001(3)	1468(3)	6701(2)	28(1)
C(31)	-1865(4)	842(3)	6678(2)	40(1)
C(32)	-3035(4)	1271(4)	6577(2)	58(2)
C(33)	-3131(4)	1784(4)	6031(2)	54(2)
C(34)	-2156(4)	2382(3)	6044(2)	51(2)
C(35)	-993(4)	1957(3)	6151(2)	39(1)
C(40)	3919(4)	1482(3)	7167(2)	28(1)
C(41)	4598(3)	2123(3)	7498(2)	25(1)
C(42)	4813(4)	2087(3)	8092(2)	35(1)
C(43)	5451(4)	2680(4)	$8400(2)$	45(1)
$\mathrm{C}(44)$	5903(4)	3338(3)	8139(2)	43(1)
C(45)	5699(4)	3394(3)	7554(2)	40(1)
C(46)	5059(4)	2798(3)	$7239(2)$	31(1)
C(50)	1998(4)	2730(3)	7389(2)	27(1)
C(51)	890(4)	3163(3)	7371(2)	24(1)
C(52)	564(4)	3780(3)	6969(2)	32(1)
C(53)	-443(4)	4223(3)	6972(2)	43(1)
C(54)	-1176(4)	4051(3)	7370(2)	44(1)
C(55)	-894(4)	3437(3)	7761(2)	34(1)
C(56)	118(4)	3006(3)	7760 (2)	27(1)
C(60)	2210 (4)	2277(3)	6181(2)	31(1)
C(61)	2415(4)	1820(3)	5664(2)	26(1)
C(62)	3528(4)	1606(3)	5567(2)	34(1)
C(63)	3739(4)	1154(3)	5097(2)	39(1)
C(64)	2848(5)	897(3)	4703(2)	45(1)
C(65)	1746(5)	1110(3)	4782(2)	43(1)
C(66)	1530(4)	1569(3)	5253(2)	35(1)
C(70)	1361(6)	10580(4)	958(3)	70(2)
C(71)	1419(4)	9655(3)	993(2)	40(1)
C(72)	1855(5)	9282(4)	1510(3)	57(2)
C(73)	1949(5)	$8420(4)$	1545(2)	54(2)
C(74)	1608(5)	7962(4)	1072(3)	58(2)
C(75)	1175(5)	8330(4)	570(2)	59(2)
$\mathrm{C}(76)$	1100(4)	9163(4)	538(2)	51(2)
C(80)	4381(6)	- 1241(4)	122(3)	72(2)
C(81)	4752(8)	-430(8)	13(5)	53(3)
C(82)	4589(5)	225(5)	407(2)	54(2)
C(83)	4230(9)	-562(10)	519(5)	63(4)
C(84)	4923(12)	1032(9)	315(6)	76(5)

[^1]Table 3
Selected bond lengths and angles in $\mathbf{2 b} \cdot 1.5$ toluene (standard deviations in parentheses)

$\mathrm{Cr}-\mathrm{C}(40)$	$2.118(4)$	$\mathrm{Cr}-\mathrm{C}(50)$	$2.121(4)$
$\mathrm{Cr}-\mathrm{C}(60)$	$2.126(4)$	$\mathrm{Cr}-\mathrm{N}(2)$	$2.275(3)$
$\mathrm{Cr}-\mathrm{N}(1)$	$2.278(4)$	$\mathrm{Cr}-\mathrm{N}(3)$	$2.297(3)$
$\mathrm{C}(1)-\mathrm{N}(1)$	$1.470(5)$	$\mathrm{N}(1)-\mathrm{C}(2)$	$1.484(5)$
$\mathrm{N}(1)-\mathrm{C}(10)$	$1.507(5)$	$\mathrm{C}(40)-\mathrm{C}(41)$	$1.476(6)$
$\mathrm{C}(40)-\mathrm{Cr}-\mathrm{C}(50)$	$95.0(2)$	$\mathrm{C}(40)-\mathrm{Cr}-\mathrm{C}(60)$	$96.5(2)$
$\mathrm{C}(50)-\mathrm{Cr}-\mathrm{C}(60)$	$90.1(2)$	$\mathrm{N}(2)-\mathrm{Cr}-\mathrm{N}(1)$	$61.60(12)$
$\mathrm{N}(2)-\mathrm{Cr}-\mathrm{N}(3)$	$61.29(12)$	$\mathrm{N}(1)-\mathrm{Cr}-\mathrm{N}(3)$	$61.68(12)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$107.8(3)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(10)$	$111.6(3)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(10)$	$114.8(3)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Cr}$	$92.3(2)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{Cr}$	$92.6(2)$	$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{Cr}$	$133.9(3)$
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{Cr}$	$121.4(3)$	$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{C}(40)$	$122.0(4)$

1447(s); 1452(s); 1463(m); 1481(s); 1493(w); 1495(w); 1498(w); 1591(s); 2802(w); 2853(s); 2929(s); 3008(m); $3063(\mathrm{~m})$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu\left(\mathrm{cm}^{-1}\right)\left(\varepsilon, 1 \mathrm{~mol}^{-1}\right.$ cm^{-1}): 15815 (230); 20786 (630). Complex 2b can be recrystallized from toluene by slow evaporation under argon as $\mathbf{2 b} \cdot 1.5$ toluene. Anal. Calc. for $\mathrm{C}_{52.5} \mathrm{H}_{72} \mathrm{~N}_{3} \mathrm{Cr}$ (797.17): C, 79.10; H, 9.10; N, 5.27\%. Found: C, 78.18; H, 10.10; N, 5.45\%.

3.6. Crystal structure determination of $\mathbf{2 b} \cdot 1.5$ toluene

Crystal data and other details of the structure determination are collected in Table 1. The dark green crystals were selected using a modified device, similar to that of Veith and Bärninghausen [10]. The crystals were mounted on a glass fibre and transferred to an Enraf-Nonius CAD 4 four-circle diffractometer equipped with a low-temperature device. Unit cell parameters from 25 reflections in the range of $9.56^{\circ} \leq 2 \Theta \leq 24.26^{\circ}$ were obtained. Data were collected with $\omega-2 \Theta$ scans. Every 200 reflections, intensity data were monitored through the measurement of three standard reflections. All data were corrected for Lorentz and polarization effects and absorption effects (difabs, min./max. $0.97 / 1.23$) [11] Systematic absence of reflections $h k l$ for $h+l=$ odd and $h 00=$ odd indicated the centrosymmetric space group $P 2_{1} / n$. The structure was solved using direct methods (shelx-86) [12] and differenceFourier methods (shelx-93) [13]. The molecule was refined against F_{o}^{2} by full-matrix least-squares tech-
niques. Hydrogen atoms were placed on calculated positions with $U_{\text {iso }}=0.08 \AA^{2}$. Every $\left(\mathrm{Cy}_{3} \mathrm{TAC}\right) \mathrm{Cr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}$ molecule crystallizes with 1.5 molecules of toluene. The toluene molecule which belongs to two assymetrical units is disordered in two positions which are connected via an inversion centre. The final values of the refined positional parameters are presented in Table 2 and the selected bond lengths and angles in Table 3. Further details of the crystal structure investigation may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD-404071 for $\mathbf{2 b}$, the names of the authors, and the journal citation.

Acknowledgment

This work has been supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. R.D. Köhn thanks the Deutsche Forschungsgemeinschaft for a Habilitation fellowship and Prof. H. Schumann for support of this work.

References

[1] G. Bhandari, Y. Kim, J.M. McFarland, A.L. Rheingold and K. Theopold, Organometallics, 14 (1995) 738.
[2] A. Clark, Catal. Rev., 3 (1969) 145.
[3] L. Wang, R.S. Lu, R. Bau and T.C. Flood, J. Am. Chem. Soc., 115 (1993) 6999.
[4] R.D. Köhn and G. Kociok-Köhn, Angew. Chem., 106 (1994) 1958; Angew. Chem., Int. Ed. Engl., 33 (1994) 1877.
[5] F.-J. Wu, G.P. Stahly, F.R. Fronczek and S.F. Watkins, Acta Crystallogr., Sect. C, 51 (1995) 18.
[6] M.S. Schnitzler, M. Sc. Thesis, Oklahoma A. \& M. College, 1951.
[7] H. Heiss and W. Herwig, J. Org. Chem., 23 (1958) 1404.
[8] M. Schlosser and J. Hartmann, Angew. Chem., 85 (1973) 544; Angew. Chem., Int. Ed. Engl., 12 (1973) 508.
[9] D.F. Evans, J. Chem. Soc., (1959) 2003.
[10] M. Veith and H. Bärninghausen, Acta Crystallogr., Sect. B, 30 (1974) 18065.
[11] N. Walter and D. Stewart, Acta Crystallogr., Sect. A, 39 (1983) 159.
[12] G.M. Sheldrick, SHELX-86, Program for Crystal Structure Solution, Universität Göttingen, FRG, 1986.
[13] G.M. Sheldrick, SHELX-86, Program for Crystal Structure Solution, Universität Göttingen, FRG, 1993.
[14] Platon94: A.L. Spek, Utrecht, 1994.

[^0]: ${ }^{\dot{4}}$ Dedicated to Professor Herbert Schumann on the occasion of his 60th birthday.

 * Corresponding author

[^1]: ${ }^{2} U_{\text {eq }}$ is defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor.

